Correspondence: Reply to ‘On the nature of strong piezoelectricity in graphene on SiO2'

نویسندگان

  • Gonçalo da Cunha Rodrigues
  • Pavel Zelenovskiy
  • Konstantin Romanyuk
  • Sergey Luchkin
  • Yakov Kopelevich
  • Andrei Kholkin
چکیده

In our paper1 we provided an experimental evidence that the single-layer graphene (SLG) deposited on SiO2 grating substrate exhibits very strong out-of-plane piezoelectric effect, several times greater than that of the best piezoceramics such as lead-zirconate titanate. Simultaneously, the in-plane strain distribution was measured by micro-Raman scattering in an attempt to relate such unusual activity to the strain gradient expected in suspended graphene near the ridges. We appreciate the comment by Stampfer and Reichardt2 who noticed that our calculations of the in-plane strain based on ref. 3 were incorrect. The overestimation of the strain values, however, does not change the main conclusion of our paper, since the piezoresponse force microscopy measurements give the value of out-of-plane a.c. deformation, fully decoupled from the d.c. in-plane strain measured by micro-Raman. We recalculated the strain map and corrected the strain values that vary now in the range from 0.078 to þ 0.078%. Nevertheless, the strain ratio between supported and suspended graphene is still 2.5 (strain for suspended graphene is about þ 0.02%). Figure 1a,b displays both the corrected strain map and cross-section of the position of Raman line and recalculated strain. Below we reply in detail to other issues raised by Stampfer and Reichardt in their communication2. Gruneisen parameter suggested by Stampfer and Reichardt2 is related to graphene produced by mechanical exfoliation, whereas in our work1 we used graphene sheets prepared by CVD. These two materials differ by the number of intrinsic defects and, therefore, their behaviour under uniaxial or biaxial strain is different. This was exactly demonstrated in ref. 3, where the opposite sign of Gruneisen parameter for G-band was revealed for CVD graphene with respect to the exfoliated one. Therefore, we used the value reported in ref. 3 for our calculations which gave us a maximum strain of 0.078%. Stampfer and Reichardt2 questioned why we used the Gruneisen parameter for uniaxial strain. We believe that using the value for uniaxial strain is dictated by the nature of the substrate. Being periodical in one direction only, this feature naturally defines the symmetry of the graphene deformations as well. Therefore, we considered uniaxial strain in our work. Stampfer and Reichardt2 claim that our paper ‘ydirectly linked the observed piezoelectricity in graphene to the supposed high in-plane strain induced by the substratey’.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correspondence: On the nature of strong piezoelectricity in graphene on SiO2

Spatially resolved Raman spectroscopy and piezoresponse force microscopy are very interesting and useful tools for investigating properties of graphene and other two-dimensional materials. In a recent article published in Nature Communications, da Cunha Rodrigues et al.1 used both methods to investigate single-layer graphene deposited on SiO2 grating substrates. Interestingly, the authors repor...

متن کامل

Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates

Electromechanical response of materials is a key property for various applications ranging from actuators to sophisticated nanoelectromechanical systems. Here electromechanical properties of the single-layer graphene transferred onto SiO2 calibration grating substrates is studied via piezoresponse force microscopy and confocal Raman spectroscopy. The correlation of mechanical strains in graphen...

متن کامل

Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite

A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...

متن کامل

Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite

A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...

متن کامل

Graphene–ZnO@SiO2 hybrid: An efficient and solid acid catalyst for synthesis of azlactones under ultrasound irradiation

The central theme of this article is how to explore a novel route to fabricate graphene– ZnO@SiO2 hybrid by a covalent process. The synthesis procedure consists of three-steps: (1) synthesis of ZnO nanoparticles, (2) ZnO nanoparticles modification by tetraethyl orthosilicate and (3-aminopropyl) triethoxysilane after introduction of amino groups on its surface, (3) the covalent attach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016